MILANO Ogni volta che viene lanciata in aria una moneta, siamo abituati a pensare che vi sia il 50 per cento di possibilità che esca testa o croce. Ma non è necessariamente così. Chi scommette sull’esito del lancio, per esempio, può assegnare all’uscita di una faccia piuttosto dell’altra probabilità differenti, a seconda delle proprie caratteristiche di giocatore. Questo viene chiamato approccio soggettivo alla probabilità ed è il tema attorno al quale si svolgerà il convegno “The mathematics of subjective probability” (“La matematica della probabilità soggettiva”), in programma all’Università degli Studi di Milano-Bicocca dal 3 al 5 settembre (Edificio U4, Aula 08, piazza della Scienza 4).
Una tre giorni alla quale parteciperanno giovani ricercatori e professori universitari per fare il punto sulle prospettive recenti e future di un ramo di studio della matematica che ha mosso i suoi primi passi negli anni ’30, grazie alle intuizioni dell’italiano Bruno de Finetti.
interverranno studiosi dall’Italia e dal mondo: Ehud Kalai (Northwestern University), William D. Sudderth, (University of Minnesota), Rajeeva L. Karandikar (Chennai mathematical institute), Eugenio Regazzini (Università di Pavia) e Massimo Marinacci (Università Bocconi).
I giochi d’azzardo sono uno degli ambiti di studio di questa teoria. “Ipotizziamo di attribuire una vincita di mille euro all’uscita della faccia con la testa, nel lancio della moneta, o del colore rosso, nel gioco della roulette – spiega Gianluca Cassese, professore di Economia politica all’Università di Milano-Bicocca, tra i promotori del convegno –. Per ottenerla, quanto sarà disposto a puntare un giocatore? Un giocatore che si rifiutasse di investire più di cento euro, per una valutazione soggettiva del rischio o altre motivazioni personali, assegnerebbe implicitamente all’evento “testa” o “rosso” una probabilità solo del 10 percento, anziché del 50 come suggeriscono i modelli matematici. Tale differenza è da attribuirsi ad esempio alla propensione individuale al rischio o a quello che il giocatore ha in mente nell’istante in cui scommette”.
Un principio valido per il gioco ma non solo. “Si possono fare molti esempi anche nella finanza. Attribuire un prezzo a un titolo di borsa in fondo non è che il frutto di un calcolo probabilistico individuale”, afferma Cassese.
Quella soggettiva risulta così una concezione fondamentale nell’ambito del calcolo della probabilità e allo stesso tempo trasversale a tante aree disciplinari, dalla matematica all’economia, dalla statistica alla psicologia.